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Abstract

A study of mode localization in mistuned bladed disks is performed using transfer matrices. The transfer

matrix approach yields the free response of a general, mono-coupled, perfectly cyclic assembly in closed

form. A mistuned structure is represented by random transfer matrices, and the expansion of these matrices

in terms of the small mistuning parameter leads to the definition of a measure of sensitivity to mistuning. An

approximation of the localization factor, the spatially averaged rate of exponential attenuation per blade-disk
sector, is obtained through perturbation techniques in the limits of high and low sensitivity. The methodology

is applied to a common model of a bladed disk and the results verified by Monte Carlo simulations. The

easily calculated sensitivity measure may prove to be a valuable design tool due to its system-independent
quantification of mistuning effects such as mode localization.
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1. Introduction

A perfectly periodic structure consists of a chain of identical elements connected to one another in an
identical manner. If the last element of the chain is connected to the first one, the structure is said to have

cyclic symmetry. When analyzing the dynamics of bladed-disk assemblies one frequently postulates perfect

cyclic symmetry. This is equivalent to assuming that the bladed disk is tuned, that is, that all blades are
strictly identical and are identically mounted and uniformly spaced on a homogeneous, symmetrical disk.

All cyclic structures share the same set of modes of vibration, called constant interblade phase angle
modes 1. The vibration modes are so named, because in a normal mode motion all blades vibrate with the

same amplitude and the difference in phase between the motion of adjacent blades is constant throughout the

blade assembly. This assumption of perfect cyclic symmetry simplifies drastically the vibration analysis of

bladed disks. Instead of analyzing the structure as a whole, the equations of motion may be uncoupled and

the size of the problem reduced to that of a single blade or that of a blade-disk sector. However, designers
are aware of inherent differences among rotor blades, due to material and manufacturing tolerances as well

as in-service degradation, a phenomenon referred to as rotor mistuning. While it is widely accepted that

mistuning causes a reduction in the risk of flutter instability [1,2], it has also been established that mistuning

has a negative effect that could outweigh this benefit, by increasing forced response amplitudes: Thus
mistuning may alter the results of a tuned analysis drastically[3,4,6] 2.

One of the most important problems that plague turbomachinery rotors is the existence of rogue blades

lone blades that exhibit unexpected fatigue failure. Recently it has been suggested that rotor mistuning

might be the cause of rogue blades, through a phenomenon called normal mode localization, whereby
vibrations are confined to a few blades of the assembly [2-4,6-9].

The phenomenon of vibration localization may be expected to occur in any nearly periodic structure for

which perfect periodicity is prevented by small irregularities. Localization, like damping, manifests itself

as a spatial decay of the vibration amplitude along the structure, but for vastly different reasons. In the case
of damping, energy is dissipated as vibrations are transmitted through the system, whereas in the ease of

localization, the energy is merely confined to a small geometric region within the structure. Localization

occurs because waves propagating away from the energy source are reflected by the boundary between the

slightly different subsystems making up the nearly periodic structure. The resulting confinement of energy

may lead to much higher amplitudes locally than would be predicted if perfect periodicity were assumed,

with possibly disastrous effects, for example in turbomaehinery. The localization phenomenon has recently
received wide attention in the literature and it has been shown to occur in various types of nearly periodic

structures, namely blade assemblies [2-4,6-9], multi-span structures [10-14], and some large space structures

[15].
The manner in which the substructures, or bays, which make up a (nearly) periodic structure are

interconnected plays a major role in its dynamics and in the occurrence of mode localization. It is only

through these connections that vibrational energy is passed between substructures. If neighboring bays are

connected through several degrees of freedom the periodic structure is said to be a multi-coupled or a multi-

wave structure. Conversely, if neighboring bays are only connected through a single degree of freedom, the

system is mono-coupled and it carries a single pair of left- and right-traveling waves [16].

Each bay in a (nearly) periodic system is, in general, a multi degree-of-freedom substructure which may

or may not be connected to ground. In the work of Mead [16], a bay with at least one immovable point within

is called "positive-definite" (for example, a multi-span beam on simple supports), whereas a "semi-definite"

bay has no such immovable points (for example, a taut string with masses at regular intervals). In the ease of

a turbine rotor, each bay in the chain is a model of one blade and of an appropriate sector of the disk to which
the blade is attached. These blade-disk elements are "positive-definite," since they have fixed points in the

form of either an unmodeled (rigid) part of the disk to which the elements are attached or their common

I In the periodic structure literature these modes are often referred to as extended, or global modes. We shall make use of the latter terminology here.

2 The numerous studies of the effect of mistuning on the dynamics of blade assemblies aQrereviewed in a survey paper by Srinivasan [5].



axis of rotation. Coupling between blades is due to structural coupling through the disk and aerodynamic

coupling through the fluid. Blades may also be connected through a shroud. Hence a blade assembly is, in

general, a complex multi-coupled (nearly) cyclic structure.

The dynamics of a tuned, multi-coupled blade assembly are modeled by matrices that have a circulant

structure and are generally fully populated. Recall that a matrix is circulant if every line is a permutation of

the previous line by a shift to the right by one element [17]. ff several degrees of freedom are considered

for each blade, the system matrices become block-circulant. The coupling between blades is generally

strongest between neighboring blades, and becomes weaker as the blades are further apart. This leads

to block-circulant matrices that are dominated by blocks close to the diagonal (and corresponding blocks

near the top right and bottom left comers). The well-developed theory of circulant matrices [17] provides

a valuable tool for the analysis of tuned cyclic systems. However, when cyclicity-breaking mistuning is

introduced, the circulant structure disappears and another means of solution is desired.

If the strength of coupling between two blades in an assembly decreases rapidly with decreasing

proximity, a blade might be considered to influence only a few of its close neighbors, by ignoring the effect it

has on the rest of the blades. To capitalize on this assumption, a transfer matrix approach can be introduced.

For example, an assembly which features only coupling between adjacent blades can be modeled efficiently

with transfer matrices of dimension twice the number of coupling coordinates [16]. Note that the number of

degrees of freedom through which a blade is coupled to its neighbors may be much smaller than the actual

number of degrees of freedom accounted for in the blade itself. With the transfer matrix approach the cyclic

nature of the system is taken into account by realizing that the state vector describing the behavior of each

blade in an N-blade system is, at any given time, periodic with period N/n, where n is some integer.

The present work centers on the study of the localization phenomenon in a general, mono-coupled,

mistuned cyclic assembly. The primary goal of the study is the development of a measure of sensitivity

to mistuning. Such a measure would ideally identify regions of high sensitivity in the space of the design

parameters, thereby predicting the risk of the occurrence of strong localization in various classes of bladed-

disk assemblies. The work is based entirely on a transfer matrix formulation of a mono-coupled assembly.

The paper is organized as follows. In Section 2 the free dynamics of a general, mono-coupled, nearly

cyclic structure are formulated with transfer matrices. Blade mistuning is introduced in the form of small,

random parameters. For demonstrative purposes a blade assembly with two degrees of freedom per bay is

introduced and used as an illustrative example for the remainder of the paper. Sections 3 and 4 contain,

respectively, a study of the propagation of harmonic waves in, and of the natural modes of the tuned structure.

In Section 5 we motivate the need for a sensitivity measure by illustrating the drastic effect that mistuning can

have on the normal modes. Section 6 opens with a discussion of the effects of mistuning on the propagation

of waves. The localization factor is subsequently defined as a means of quantifying localization. A measure

of sensitivity is then suggested and analytical approximations of the localization factor are developed in terms

of this sensitivity measure. The results are verified for the example system by Monte Carlo simulations. The
main conclusions reached are given in Section 7.

The primary contribution of the paper is a method for estimating sensitivity to mistuning. This is

accomplished through the definition of a sensitivity measure, whose inexpensive calculation is based on

the model of a single bay in a mono-coupled assembly. Furthermore, a quantitative, universal relationship

between the sensitivity measure and the localization factor verifies the appropriateness of the sensitivity
measure.



Figure 1 A general N-bay nearly cyclic assembly with P degrees of freedom per bay, one of which

couples adjacent bays.

2. Transfer Matrices for Nearly Periodic, Mono-Coupled Structures.

The transfer matrix modeling of (nearly) periodic structur_ undergoing harmonic motion requires the

definition of a state vector. For the discussion we introduce the terms bay and interface. A bay is exactly

one spatial period in the periodic structure, such that only bays that are nearest neighbors are coupled. An

interface is a point on the chain which separates two bays. To a state vector for a bay corresponds a transfer

matrix that relates the states at two consecutive interfaces, or two consecutive bays. The dimension of the

state vector must be twice the number of coupling coordinates at each interface [16]. A state vector is most

commonly defined as the displacements of the coupling coordinates at an interface and the associated forces.

For a mono-eoupled structure (see Fig. 1) a two-by-two transfer matrix would relate the deflection and force

at adjacent interfaces, thus:

[r]- oIr] ,-, . .,
i i--I

Where the subscript 0 implies a tuned system. Alternatively we could define a state vector for a bay as the

deflections of the coupling coordinates at both ends of the bay (see Fig. 1). Then

q_ J
= _,...,N (2)

relates the states of two adjacent bays. This paper is based on the latter approach. The representation

in Eq. (2) does not account for motion-independent external forces acting on the system and hence only

the free dynamics are considered. The formulation of Eq. (2) requires two equations relating the coupling

coordinates qi+l, qi and qi-l. One is the equation of motion taken at interface i:

--qi+l + [3o(Oa)qi -- qi-I = 0, /%(w)_ _. (3)

Note that Eq. (3) is symmetric in qi+_ and qi-i, which requires the structure to be symmetric with respect

to clockwise and counterclockwise numbering. This is the case only in the absence of aerodynamic and

Coriolis forces. More on that later. The symmetry discussed here is different from Mead's [16] definition

of synunetry of individual bays, and Eq. (3) holds for either symmetric or unsymmetric bays. Equation (3)

does not account for dissipation since/3o(w) is assumed to be real valued. The second equation in Eq. (2)

is simply the identity qi = qi. Hence, each bay of a perfectly cyclic (tuned) mono-coupled structure, is

described by the same transfer matrix representation

qi+l] = [/0°I_0)01] [qiqil] =To [qiqil]qi
/%(w) _ _. (4)

where Eq. (4) accounts for neither damping nor aerodynamic effects. In general each substructure possesses

P degrees of freedom (see Fig. 1) and the generalized coordinates of the ith substructure are related to the

coupling coordinate qi through P - 1 equations of motion local to the bay. However, note that the coupling
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degreeof freedom has no special significance, and in fact we may choose any of the P degrees of freedom

as our reference coordinate qi. The choice must of course be the same for all bays.

When mistuning is introduced into the above cyclic system its periodicity is broken in one of two ways.
First, the mistuning may be caused by a parameter which only appears in relation to the i t_ interface, e.g., the

mistuning of parameters of individual blades. When this is the case the symmetry of Eq. (3) is unaffected

and Eq. (4) is replaced by

I '1:][ (5)

where 6i is the small deviation (order c or smaller) of the parameter from its average value, defining the

mistuning for the i thbay. This is a random variable of mean zero. In the notation, the frequency dependence

of/3 has been dropped, for clarity.

Alternatively, the mistuning may be caused by a parameter which appears at both interfaces, i and

(i + 1), e.g., the stiffness of a spring connecting two interfaces. Then Eq. (3) is no longer symmetric and
Eq. (4) becomes

(6)

where 6i and 6i- 1 are random variables which correspond to the mistuned parameter on each side of interface

i. Again, the frequency dependence of a and/_ is implied. Note the use of a semicolon in the index.

2.1. Example: A two-degree of freedom per bay model.

\

i
i-1 i+1

Figure 2 The i th blade in an N-blade assembly with one blade coordinate and one disk coordinate per

bay is shown with its two coupled neighboring blades.
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Let us illustratetheabove withan example.Considerthemono-coupledbladeassemblywithtwo degrees

offreedomperbay shown inFig.2.Dye and Henry [3]were among thefirsttoproposethisbladeassembly

model andithasbeenusedsubsequentlybothforbladeassemblies[1]and forlargespacereflectors[I5].This

systemwillbe utilizedfordemonstrativepurposesfortheremainderofthepaper.InFig.2,q_representsthe

single-modemotionofthebladeand q_ accountsforthemotionofthediskatthebladeroot.Corresponding

toq_ aretheblade(modal)mass mb and (modal)stiffnessk_. The mass md simulatestheeffectivemass

of thebladerootand thecorrespondingsectionofthedisk.The stiffnessk_ representsthebasicstiffness

of the rotordisk,whereas k_ providesdiskcouplingbetween neighboringblades.Itisassumed thatall

bays have identicalmasses mb and md and thatthestiffnessesk_,k_,and k_ may differfrom one bay to

thenext.Thisreducescomplexityand providesadequatemeans ofmistuningthenaturalfrequenciesofthe

individualbays.The averagevaluesofthestiffnesscsarc/%,kd,and kc,respectively,and correspondtothe

stiffnessesina tunedassembly.We aim tostudyhow differentcombinationsofstiffnessand mass values

affectthesensitivityofthesystemtomistuningand how thesensitivitydifferswhen thebladestiffness,the

diskstiffness,orthecouplingspringstiffnessaremistuncd.

We now proceedtoformulateatransfermatrixrepresentation

ofthesysteminFig.2.Bay iisdefinedasthei_ blade-diskelement,

includingthespringconnectingittoblade(i+ I)(seeFig.3).The

i_ interfaceisthe pointwhere bay i and bay (i- I)meet. All

parametersof bay i exceptthe springstiffnessappearsolelyin

relationwiththei_ interface,whereask_connectsinterfacesiand

i+ 1. For thatreason,a dynamic forceequilibriumatinterfacei

willincludebothk_ and/¢_-I.Thisyieldstheequationsofmotion

m q?÷ -q:)=0, (7)

i--I d d i d d i d i d b .,d
k c (qi--qi_l)+kc(qi--qi+l)+kdqi+kb(qi--qi)+mdqi =0, (8)

where Eq. (7) is local to the i th blade. We write the mistuned
stiffnesses as

k_--kd(l+6d), k_=kb(l+_/b) and k_--kc(l+6C), (9)
Figure 3 The i tb bay.

where _, df_and 6/bare random variables with zero mean and standard deviation sd, s_ and 8b, respectively.

Assuming harmonicmotion, _ = -ce2q/b, Eq. (7) may be rearranged as

( (q/d= 1 k_ ]qi = 1 (1"_'-_ qi,

where

is a dimensionless frequency.
which becomes,

1 [ kd (1 c02(1 + 6/b)q/d+1= l+_C 2+6c+6_-1+_" c +6/d)--_c(_+6/_2)
I.

where we have introduced the following dimensionless parameters

kd=kd m md
kb kb mb

(it)

_2 = _bW2 (1D
kb

Equation (10) is now used to eliminate the blade coordinates from Eq. (8),

rht_2] 1 + 61_lc qd-1
02)

(13a,b,c)
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Defining

_ ffu_2]1 c 6c .k-_a(1+ - (14)
tOi;i--1 = 1 + 6_ 2 + 6i + i-I + 8d) °52(1 + 6_)

and

I +6_-1
c_i;i-I = _ (15)

I+6_

we can write

= 0 Lqi-I '

where the state vector for the system in Fig. 2 consists of the disk generalized coordinates. Equation (16)

corresponds to Eqs. (5) and (6). However, we note that only in the case of coupling spring mistuning, i.e.,

6_ :/0, is the more complex form of Eq. (6) required, as otherwise oti;i_ 1 = 1 and ]_i;i--I = _i. Thus, we have

effectively formulated the dynamics of the system in terms of one reference degree of freedom per bay, in

this case the coupling coordinate q_. Since the system is only mono-coupled, the other coordinate (the blade

degree of freedom) has been eliminated. Of course, once the state vector has been calculated via transfer

matrix methods, the blade dynamics are recovered from Eq. (10).

In general, a mono-coupled assembly with P degrees of freedom per bay has P - 1 equations local to

the bay, such as Eq. (10), and a single equation relating coupling coordinates of adjacent bays, e.g., Eq. (12).
Needless to say, the complexity of this latter equation increases considerably as the number P is increased.

For a tuned assembly we have 6_ = 6/a = 6/b= 0 and To has the form in Eq. (4), where/30 is given by

kd _2 _u_2
flo =2+--- - -

kc k¢(1 - _2) kc (17)

In their work Comwell and Bendiksen [15] and Bendiksen [1] took a different approach to the analysis of

the same model. Using the theory of circulant matrices, they chose to eliminate the disk degrees of freedom

by applying an approximate reduction procedure, arguing that in many cases of practical interest the disk

stiffness is much greater than the blade stiffness. This is equivalent to setting rna = 0 and thus rh = 0.

We have found this to be an unnecessary approximation, although the approach allows one to evidence the

coupling among all blades (as opposed to nearest neighbor coupling) through the disk degrees of freedom.
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3. Propagation of Waves in the Tuned Structure.

We examine the propagation of waves in a general, mono-coupled, periodic structure whose dynamics are

governed by Eq. (4). It has long been known that energy-carrying motions in periodic structures only occur

in isolated frequency ranges known as "passbands." Outside the passbands only attenuated standing waves

(or, more rarely, complex waves) can take place [16]. A physical understanding of these wave-propagation

characteristics can be gained through the diagonalization of Eq. (4). This requires the solution of the

eigenvalue problem:

qi qi-I qi-i ' '

Equation (18) yields the eigenvalues and eigenvectors of To. Its significance is as follows. The eigenvectors

of To define wave-modes, or characteristic waves, which propagate along the structure in snch a way that the

state-vector is multiplied by a complex scalar, A, as the wave passes through each bay. Thus the eigenvalues,

)_1.2 = -_- -4- -1, ).1,2 E C, flo E/R, (19)

define the frequency-dependent propagation properties of the corresponding wave-modes. The transfer

matrix To in Eq. (4) is real with det To = 1, resulting in eigenvalues that are reciprocal and are either real

or complex conjugates. We choose the convention that )_ has modulus greater than or equal to one. This

associates A1 with the wave-mode traveling or attenuating in the direction of decreasing bay number. We

shall call this direction the left or counterclockwise direction. The wave-modes appear as the eigenvectors,
[1, A2]T and [1, )q]r, corresponding to the eigenvalues )q and )_2, respeetively. The condition A1)t2 = 1

indicates that the two wave-modes could also be written as [A1, 1]2"and [1, )q]2", which shows that they

axe equivalent except for their direction of travel. This is supported by the symmetry of the problem to

clockwise or counterclockwise numbering of the bays. The independent wave-modes defne the preferred

means of wave propagation along the periodic assembly -- much like normal modes are the preferred form

of vibration of a structure. The normal modes form a basis for all vibration shapes in a structure. Similarly

all possible waveforms in a structure may be written as a linear combination of the pair of wave-modes.

The eigenvectors of To are arranged as the columns of the matrix X:

1 1 ] (20)X= A2 Al "

The matrix X defines the transformation

[::,]x[ ]i ,=l,
from physical coordinates to left- and right-traveling wave coordinates at bay i, corresponding to the wave-

mode basis. The displacement transfer matrix To thus is transformed into a diagonal wave transfer matrix
as

Let A1 = e_' define the complex propagation constant, IZ, with p = 7 + jot. Here 7, the real part of the

propagation constant, is the rate of exponential attenuation of the wave amplitude from one bay to the

next. The imaginary part, tr, is the interblade phase angle, the difference in phase between the motion of

adjacent bays. In the literature dealing with wave propagation in periodic systems [16] the interblade phase
angle is usually called the wave number. The propagation constant contains all the information about the

8



frequency-dependent propagation of waves through the assembly. Since/30 in Eq. (19) is a real valued

function of dimensionless frequency, O3,we distinguish between the following cases:

ll3o(o3)[ < 2 In this case ,_1 and ,_2 are complex conjugates of magnitude 1, yielding 3' = 0. These

frequencies define apassband in which waves travel without attenuation. From the real part

of Eq. (19), the interblade phase angle is related to frequency by the dispersion relation:

2 cos a =/_o(_), 0 < a < x. (23)

I o(o3)1> 2

I o(o3)1= 2

For a given value of a, Eq. (23) has as many frequency solutions as there are degrees of

freedom in each bay [16]. Hence, the number of passbands equals the number of degrees

of freedom in each bay. One can reason that the natural frequencies of the system will

lie in the passband because a perfectly periodic system must have periodic modes. In the

blade assembly literature [1-9] these modes are usually referred to as constant interblade

phase angle modes, i.e., modes with identical phase change from one bay to the next. The
frequencies at which a = lr/2 will be referred to as midbandfrequencies. Note that the

midband frequency is not necessarily located close to the mean frequency in the passband.

The eigenvalues are real, hence 3' is nonzero, leading to attenuation. Also, adjacent bays

are vibrating either in phase or out of phase, cr = 0 or a = a-, which implies that these are

standing waves. These frequency ranges define stopbands.

This gives 7 = 0 and o = 0 or o = 7r, and defines the bounding frequencies or the passband/-

stopband edges.

3.1. Example.

7

4

3

2

1

0

3rd4

rd2

rd4

0

I

I

f
0 71 2 3 4 5 6

N2

Figure 4 The passband/stopband structure of the assembly in Fig. 2, for/¢c = lea = r_ = 1 (tuned case).

Note the two distinct passbands where 7 = 0. Also note a singularity at o3 = 1, corresponding

to the natural frequency of a cantilevered blade.
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Figure4 depicts the passband/stopband structure for the assembly in Fig. 2 for one set of parameter values.

The rate of exponential attenuation, 7, and the interblade phase angle, a, are displayed as a function of the

dimensionless frequency. As predicted above, two frequency passbands are observed, corresponding to the

two degrees of freedom per bay. In the passbands 7 = 0 and unattenuated propagation of waves occurs.
The wave travel is evidenced by the change of phase, 0 < a < 7r, from bay to bay. The other regions are

stopbands, 7 _ 0, where standing waves decay exponentially. In stopbands, neighboring bays are either
vibrating in phase or out of phase, hence there is no propagation. A special feature for this structure is the

infinite attenuation observed at _ = 1, that is, at w2 = _ We explain this behavior by pointing out that
rftb °

this is the natural frequency of a blade cantilevered at its root, hence at this frequency qd = 0. Equation

(10) eoniirms this. If the disk deflection equals zero, energy cannot be transmitted along the bays, hence the
infinite attenuation of the waves, which can be viewed as an antiresonance.

4. Natural Frequencies and Mode Shapes of Finite Cyclic Systems.

We now make use of transfer matrices to derive a closed-form equation for the natural frequencies and

normal modes of a finite, perfectly cyclic system. We already know from the theory of circulant matrices

[17] that all cyclic structures share the same set of global modes, also referred to as constant interblade phase

angle modes. We also know that structures described by real symmetric and circulant matrices have real
eigenvalues, almost all of which are double. This is verified here using transfer matrices.

4.1. Natural Frequencies of a Tuned System

In searching for the natural frequencies of the system whose dynamics are described by Eq. (4), we recall

that/3o is a function of frequency, _. Using the cyclic nature of the N-bay system and Eq. (4), we obtain

Hence nontrivial solutions are obtained if and only if

det (TolV- I)=0.

(24)

(25)

Applying the appropriate transformation to To yields a Jordan canonical form J. This allows for the ease

)q = A2 = 1, which does not have a complete set of eigenvectors. Thus Eq. (25) transforms to

det (jN _ I) = 0. (26)

Since the matrix J is an upper triangular matrix with the eigenvalues A1 and A2 (from Eq. (19)) on the

diagonal, jN is also upper triangular with AN and A_ on the diagonal. Hence Eq. (26) becomes

0,_ - 1)(AN - 1)= 0, (27)

or

)_1,2 = _ = eJ2_r(n-1)/N n = 1,..., N.

Thus, from Eq. (19), the natural frequencies of the finite cyclic system, _,,, satisfy

3o(_,) 4- /30 ,_) - 1 = e j2"cn-l)/N r_ = 1,.. N,
2 °'

or

n= 1,...,N.

(28)

(29)

(30)

10



For each n, the number of frequency solutions to Eq. (30) equals the number of degrees of freedom per bay,

hence an N-bay assembly with P degrees-of-freedom per bay has NP natural frequencies. An important

consequence of Eq. (30) is/3o(03n) = flo(03_v-,÷2), i.e., all natural frequencies are double, except o31 and,

for a system with an even number of bays, &(N.2)/2. Note that the numbering scheme presented here does

not place the natural frequencies in an ascending order. The relationship between the natural frequencies is:

031 <_ 032 ----03N < 033 ----03N--1 < ..- < 03(N+1)[2 -" 03(N+1)[2+1, if N is odd. If N is even the relationship

is: 031 < 032 = 03N < ... < 03N/2 = 03N/2+2 < 03_r/2+1, with unique frequency values at both ends. This
pattern is repeated in each passband. The passband edges are natural frequencies for an N-blade system

in the following cases. The lower passband edge is always a natural frequency corresponding to n = 1,

or a = 0. If and only if N is even is the upper edge a natural frequency, corresponding to n = N/2, or

a = 7r. Frequencies corresponding to all the other values of n are double. Furthermore, Eq. (30) gives

-2 < 30(03,,) < 2, indicating that the natural frequencies lie in the system's passbands (see Eq. (23)). Thus,

the assembly has N natural frequencies, mostly double, in each of its passbands.

At this point, let us digress to examine briefly what would be the effect of damping and that of

aerodynamic coupling (limited to adjacent blades), hitherto excluded. Equation (4) would instead be

ql
fit(w), %(w) E C. (31)

The effect of damping is to render/30 complex, whereas aerodynamic terms cause/3o to be complex in

addition to introducing the complex off-diagonal term at. The significance of at is that the system is no

longer symmetric with respect to clockwise and counterclockwise numbering. This makes sense since wave
propagation in the aerodynamic system depends on whether the direction of wave travel is the same as the
direction of rotor rotation, or not. The eigenvalues of f'o are then

At, 2 = -_- 4" -- at,
/3o, ao E C, (32)

instead of the values expressed in Eq. (19), with AIA2 = ao. The fact that 13o is complex precludes the

existence of passbands, as expected in a nonconservative system. Equation (30) for the natural frequencies
takes on the more complicated form

/3o(03n) = e j27r(n-l>/N + Oto(ff;n)e -j2_r(n-l)[N n = 1... N, (33)

indicating that the presence of at, which is due to aerodynamic terms, splits the natural frequencies of the

system.

4.2. Nodal Diameter and Nodal Circle Modes.

From Eq. (30) there are N natural frequencies in each passband and we wish to determine the corresponding

modes shapes. The complex mode shapes can be found simply through a recursive application of the wave

modes given in Section 3. This yields the shape [1,/_1,2, A12,2, N-t..., A1,2 ], with AL2 given by Eq. (28). The
mode shape may also be given in terms of the interblade phase angle for the mode. A comparison of Eqs. (23)

and (30) shows that to each 03n* corresponds a mode shape with constant interblade phase angle o,_, given

by
27r(n- 1)

an = , n = 1...N. (34)
N

This result is independent of the passband number and implies that for a given n all frequency solutions of

Eq. (30) are associated with the same global mode shape, characterized by a constant interblade phase angle

* Recall that the index n on natural frequencies does not imply an ascending ordering of natm-alfrequencies.

11



along the assembly. By global we mean that modes of interblade phase angle _r,_, in the different passbands,
feature the same deflection pattern from bay to bay along the assembly and differ only by their local vibration

shape within an individual bay. In the first passband all blade-disk elements vibrate in their first mode, in

the second passband in their second mode, etc. From Eq. (34) we note that exp(jan) = exp(-ja(N+2-n)),

which means that to each double natural frequency, _,_ = _(N+2-n), corresponds a complex conjugate mode

pair, one traveling clockwise and the other counterclockwise. Since they occur at the same frequency, these

two traveling mode shapes may be combined to form two orthogonal real (standing waves) modes, simply

by separating their real and imaginary parts.

The global modes are often classified in terms of their interblade phase angle. The first mode would
thus be a zero interblade phase angle mode, with all bays moving in phase. The second mode and mode N

are -_ interblade phase angle modes, etc. Another means of classification is to consider the number of noda/
diameters featured by the mode. A nodal diameter is a term borrowed from continuous two-dimensional

systems with cyclic symmetry, where it is a nodal line passing through the center of symmetry. In our case

it is simply a diameter connecting pairs of nodes or bays with zero deflection positioned on opposite sides
of the structure. The first mode is thus a zero nodal diameter mode. The second mode and mode N are

one nodal diameter modes, etc. Another concept from continuous two-dimensionai cyclic systems is that

of nodal circles. Here, a nodal circle is drawn through the nodes of the individual bays of the assembly.

Naturally in a cyclic system all N blades have nodes at the same distance from the center of the rotor. We use

the number of these nodal circles to distinguish between modes with the same global shape but in different

passbands. In general, in the first passband the blade-disk elements have no nodes, hence all modes in the
first passband are zero nodal circle modes. In the second passband all blade-disk elements typically feature

one node, hence all second passband modes are one nodal circle modes, and so on.

Figure 5 The global mode shapes of a 28-bay cyclic assembly. The 1stmode is a unique zero nodal
diameter (tTl = 0) mode. The 2nd mode is a one nodal diameter (a2 = _) mode. The 28 'h

mode (not shown) also has one nodal diameter but with a28 = -_4" The 15th mode is a
fourteen nodal diameter (cq5 = _') mode and is unique.

Figure 5 illustrates the global modes of a 28-bay cyclic system. For modes corresponding to the same

double natural frequency only one is shown. For example the 28th global mode would be like the 2nd global

mode except for the direction of travel Combining global modes 2 and 28 would yield two standing mode

12



shapes, identical to the one shown with one mode rotated 90 degrees with respect to the other.

4.3. Example.

7 i i i i I ! i i !

_2

6

5

4

1st band

I I I I I I I I I

0 N/4 N/2

number of nodal diameters

Figure 6 Natural frequencies as a function of the number of nodal diameters, for both passbands of the

system in Fig. 2 with kc = kd = _ = 1.

Turning our attention to the system of Fig. 2, we have, from Eqs. (30) and (17)

fl(_,,,) = 2+ ka -2 rW.Z,_ 2a'( 1)
kc k,(1 - _2) ke

which when solved for _2 yields

2kc (1-cosan) +kd+_+ 1+ _/[2k_ (1 -coso'n)+ka+riz* 1] 2.- 4r_ [f¢a+2kc(1-cosan)]
-2

Wn = 2r_ '
(36)

where the minus sign yields values in the first passband and the plus sign gives second passband frequencies.

In Eq. (36), a, is the interblade phase angle of the n °amode in the passband, given in Eq. (34).

It is customary to plot the natural frequency distribution against the number of modal diameters. This

gives an indication of the number of natural frequencies per unit frequency, the modal density, in a given

frequency range. In Figure 6 this is done for r?z = 1, ka = 1 and k, = 1. An interesting feature, sometimes

overlooked, is that the curves have local extrema at zero and N/2, hence the modal density is infinite at

passband edges. The curves increase monotonically from 0 to N/2 and possess no other extrema.
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Figure 7 Typical local mode shapes in each passband with zero and one nodal circle, respectively.

While all circulant systems feature the same global mode shapes, illustrated in Fig. 5, the shape local

to each bay is determined from Eq. (10), which may be used to calculate the radius of the nodal circle for

the mode. For this system the modes of the first passband (_,2 < 1) have no nodal circle (qa and qb have

the same sign) and the modes of the second passband (_2 > 1) have one nodal circle (qa and q_'have the

opposite sign). From Eq. (10) we also see that the ratio between qa and qb is frequency dependent, hence the
nodal radius varies within the passband. The local vibration patterns of the blade-disk elements are shown

in Fig. 7 for the two passbands.

Appendix A contains a detailed discussion of the effect of the system parameters on the width and

location of the two passbands. The main findings are that the lower passband edges correspond to a mode

which has all blades vibrating in phase and thus to a system in which the blades are completely uncoupled.

By that we mean that no interaction occurs between bays. Also, a system is called weakly coupled in some
passband if the passband is narrow.

5. Natural Modes of a Mistuned Structure.

Let us begin the analysis of mistuned systems by examining the effect mistuning has on the natural frequencies

and mode shapes. When mistuning is introduced, the system is no longer symmetric with respect to the

clockwise and counterclockwise directions. This loss of cyclicity results in a splitting of the double natural

frequencies, such that the system has P clusters of N distinct natural frequencies, where N is the number

of blades and P is the number of degrees of freedom per bay. The clusters of frequencies correspond,

approximately, to the passbands of the system's tuned counterpart, although they generally are wider. The

corresponding mode shapes are standing waves that no longer possess the cyclic symmetry exhibited by

the tuned system, where all blades vibrate with the same amplitude. Instead, the vibration energy may be

concentrated in a handful of blades that have significantly larger deflection than the majority of blades. We
refer to this phenomenon as mode localization.

As an example of the effect of random mistuning, we consider the mode shapes of the mistuned blade

assembly model depicted in Fig. 2. Figure 8 displays the global blade-to-blade pattern of the mode shapes

in the second frequency cluster of a 28-blade assembly, where the individual blades vibrate primarily in

their second mode (see Fig. 7). High levels of localization are observed. The mode shapes have changed

drastically compared to the tuned modes depicted in Fig. 5, and the vibration energy is no longer uniformly

distributed along the rotor, but concentrated in as few as 5 blade-disk elements. This may result in a

substantial increase in amplitudes and a potential decrease in fatigue life.

A compact characterization of the strength of localization and the prediction of high sensitivity to
mistuning is the subject of the remainder of this study.
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Figure8 Localized modes in the second frequency cluster of a 28 blade assembly with ka = _ = 1,
kc = 0.1, and uniform random mistuning in the blade stiffness with 5% standard deviation

(sb = 0.05). Modes are sorted by increasing natural frequency.
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Figure 9 Scattering of waves at substructure interfaces.

6. Waves in Mistuned Systems.

A statistical approach is chosen to examine the high sensitivity to mistuning and the occurrence of localization

in randomly mistuned assemblies. A statistical description of the modes of vibration is not practical due to

the switching of the associated natural frequencies as the strength or the distribution of mistuning varies.
We choose instead to examine the propagation of incident waves in mistuned assemblies. This allows us

to control the frequency at which we wish to examine localization. In order to avoid the contamination of

the localization effect by the cyclicity condition, an infinite assembly is studied. We further assume that

mistuning is restricted to a segment of N bays (numbered from i = 1 to i = N) embedded in an otherwise
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tunedinfiniteassembly.Weareinterestedin thetransmissionofincidentwaves along the mistuned segment.

An advantage of this approach is that a traveling wave that exits the mistuned segment will be propagated

away and will not return.

In Section 3 we demonstrated how the transfer matrix To of a tuned bay is diagonalized by the

similarity transformation defined by the matrix X, which has as its columns the eigenvectors of To. We

called the diagonalized matrix a wave transfer matrix, Wo. The transformation introduces a new set of

coordinates, namely the left- and right-traveling components of a wave. The transformation defined by X

does not, in general, diagonalize the transfer matrix of a bay belonging to the mistuned segment, Ti or Ti;i-i

(i = 1,..., N), as the ease may be. Instead a non-diagonal wave transfer matrix is generated. The dements

of this matrix may be expressed in terms of the more familiar reflection and transmission coefficients, as
follows.

At the interface between dissimilar bays, waves are split into a transmitted part and a reflected part.

As illustrated in Fig. 9, the left traveling wave incident to bay i - 1, Li, is the sum of a transmitted left

traveling wave, tiLi÷l and a reflected fight traveling wave, riRi. Likewise, the fight-traveling wave incident

to bay i + 1, Ri+l, is comprised of a transmitted part, {iRi, and a reflected part, riLi+l • Here ti and {i are

transmission coefficients and ri and ¢i are reflection coefficients in the left and right directions, respectively.
Transmission and reflection coefficients are the complex amplitudes of transmitted and reflected waves due

to an incident wave of unit amplitude, respectively. The above defines a scattering matrix, Si:

,i][Li,l ' (37)

where directional symmetry in the absence of aerodynamic forces dictates that {i = ti and _i = ri. Solving

Eq. (37) for Ri÷l and Li+l yields

"' ' t ',tJ '
(38)

Equation (38) tells us that the off-diagonal elements in Wi govern what portion of a right or left traveling
wave is reflected, thereby generating a wave in the opposite direction. The transmitted portion of the incident

wave is determined from the first diagonal element in the wave transfer matrix. For a tuned bay Wi = Wo
is diagonal and there is no reflection at the interface. Hence ri = 0 and the wave is fully transmitted. For a

mistuned bay there is a reflection, or scattering at the interfaces between bays. A wave incident to a segment

of randomly mistuned bays will experience multiple reflections whose effect may be to trap a wave near the

incidence region. Only a frequency-dependent fraction of an incident wave is transmitted along to the far

end of the mistuned segment. This effect is called localization. In a mistuned system passbands no longer
exist since all waves are attenuated.

For a segment of N dissimilar bays the wave transfer matrix is the product of the random wave transfer

matrices of the individual bays

1 -p_v
N

W N = 1-I Wi = "IN "IN
iffil p.N "Iv- p-'_--_ (39)

"IN TAr

The one-one term, I/rN, tells us which portion of an incident wave is transmitted to the far end of the

mismned segment. Obviouslythebehaviorof thetransmissioncoefficientforthemistunedsegment,_v,

governs the strength of the effects of mistuning and the resulting localization. We define the localization

factor as

7= lira [__1o[_1]N--,oo ' (40)
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implyingthatasymptotically,theratioofemergenttoincidentwave decreasesexponentiallywithan increas-

ing number of bays,N. The localizationfactor,7, definestheaverageexponentialdecay rateper bay and

thusisa descriptorofthestrengthoflocalization.Assuming thattherandom variables& (i= I...N) from

Eqs.(5)and (6)form an crgodicsequence,thenthetransmissioncoefficient,rlv(81,•••,6N),isalsoergodic.

Ergodicityimpliesthat,withprobabilityI,thelimitinEq. (40)isequivalenttotheensemble averagefora

finitemistunedsegment oflengthN:

11m 137 = In , (41)

where 0 denotes the expected value of a random variable.

The assumption that a cyclic structure is infinite is of course a limitation. It must be understood that this

type of analysis is only applicable if the localization is strong enough that the vibration energy is confined

to a sufficiently small region compared to the size of the assembly. For a nearly cyclic finite system this

basically requires that the wave be adequately attenuated before reaching the incidence region again and

thus interacting with other waves from the same soume.

6.1. Sensitivity to Mistuning.

In general Eqs. (40) and (41) for the localization factor cannot be evaluated in closed form. However,

analytical approximations are possible using perturbation methods, as follows.

We seek an expansion of _ in Eq. (40) in terms of the small mistuning parameter, 6i (6i of order c or
smaller), thus treating the mistuned system as a perturbation of the tuned system. This is obtained through

a Taylor expansion of the function _?(6i) in Eq. (5):

 (6i)= +O(6 ) (42)

and subsequent expansion of rN and expansion and averaging of 7. The expansion in F_,q.(42) must of
course be uniform, i.e., fl'(0) must be of order one (order e0) or smaller. However, if the expansion in

Eq. (42) is nonuniform, i.e., when _'(0) is large (order e-1 or larger) the technique breaks down. In this case

the perturbation expansion is only valid for 6i second order (order e2) or smaller. This breakdown indicates

high sensitivity to mistuning and it is when the breakdown occurs (if it occurs) that systems have been seen

to enter the realm of strong localization. This suggests the use of the first-order Taylor coefficient of _(6i)

as a measure of serLsitivity to mistuning:

S = fl'(O) (43)

A similar scenario may take place in the Taylor expansion of the transfer matrix in Eq. (6), albeit with four

different first-order Taylor coefficients for a and/3 with respect to 6i and 6i-1. We do not formally define a

sensitivity measure for this case.

When the sensitivity measure, S = j3'(0), becomes large the expansion in Eq. (42) is nonuniform,

indicating a qualitative change in the assembly's dynamics, and other avenues must be explored. Note that

in the passbands of the tuned system we have -2 < _o < 2, but when S is large, 13(60 in Eq. (42) has

the potential to become large for first-order mistuning in that frequency range. This suggests treating the

off-diagonal terms in the transfer matrix of Eq. (5) as small perturbations compared to the large _(6i), thus

yielding an alternative expansion for the high sensitivity case.

The two techniques outlined here, for the cases of normal and high sensitivity, are detailed in the

following sections.
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6.2. Classical Perturbation Method m Normal Sensitivity.

Consider the ease where the expansion (42) is valid for first-order mistuning (61 of order _), i.e., when

S =/_'(0) is not large (S of order one or smaller). We shall refer to this ease as low or normal sensitivity. The

much simpler case in Eq. (5) is treated first to better explain the technique. In Eq. (5),/_/=/_(6i) depends

only on one mistuned parameter, with/3(0) =/_o corresponding to the tuned case. A uniform expansion of

Ti in the small mistuning parameter 6i yields

6/2
...

,, 82i
= To + T'Si + T -_ +...

A transformation to wave coordinates is accomplished with the matrix of eigenvecto_ of To,

1 a la

(44)

(45)

where a is defined in Eq. (23). Note that the analysis is limited to the tuned system's passband, since there

is already large attenuation in the stopband. The wave transfer matrix is expanded as

W" 67
Wi =X-1TiX= Wo+ W'6i+ -_+...

._ [e; a e2j¢] + [eJ_ e -3°'l" ] 'i/_t(0)_S__a i. [e3:" i ] @"(o)e-_" _i-_ +''"

(46)

We need to evaluate the wave transfer matrix for a segment of N mistuned bays, each with its own random

mistuning parameter 8i. The random variables _i corresponding to each bay are considered independent

and identically distributed, with zero mean and standard deviation s_. An assembly of Ar bays has the wave

transfer matrix Wlv, which, when expanded to the second order in the 6i's, becomes

WN -" H W° + _i W! + W't + 0(_3i)

i=N

(47)N N . 2 N N

W o-lW'WoN-i ,= WoN + __, + •"0 2
i= l i= l i= l .i,,!

J_

Thematrixi_inr_. (47)hasa hi_y complexform,noteva_uate_sincethatentiretermwillvanishin
me averaging process that folJows, due to independenceof the random variables hi, (i = l... 23/'). For an
approximationofthelocalizationfactor,onlythefirstdiagonalelementofWN,_g - ± isneeded.We

,.rN ,_

have

1__ = eJN, r 1 + fl'(0------2--)_ _i + 4j sin'-'-_ ei + O(_), (48)
_-N 2j sin a i=l

_'N - 1 + _is--_n2? 6, _t + 0($_). (49)
'; l=l

Since the _i's have zero mean and are independent, we have (_i6j) = 0 for j g i and (_i_i) = s_. Using
the expansion log(1 + x) = x + O(x2), we obtain the approximation of the localization factor, valid for low

sensitivity,

(1 in 1 _\ l(/_'(0)s,) _ (S(_))_s_ O(S)<1, (50)7 = _ _ / -_ _ \ 2 sin a = 2 (2 + flo(O_)) (2 -/_o(_3))'
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whereS is the sensitivity measure defined in Eq. (43). Note that both S and/30 are functions of _5 and vary

within the passband. The localization factor, 7, allows for localization effects to be characterized in a simple

and compact way, without extensive simulations of mistuned systems. Note that Eq. (50) is general and

applies to any mono-coupled mistuned assembly, as long as the mistuned parameter is not one that connects

the two interfaces bounding the bay. It is of interest to note that the second-order Taylor coefficient,/3"(0),

is cancelled from the derivation. According to Eq. (50), the onset of localization increases as the sensitivity

measure squared. Also, to first order, the localization factor increases with the square of the mistuning

standard deviation. The approximation of the localization factor becomes unbounded at frequencies which
correspond to the edges of the passband of the tuned structure, 13o = 4-2. This is reasonable, since at those

frequencies the transformation matrix X (see Eq. (45)) is singular.

In order to obtain a quick estimate of the level of localization present in a system, it is advantageous

to focus on the localization factor at the midband frequency. This frequency corresponds to the interblade

phase angle cr = 7r/2, thus is the median natural frequency* of the tuned system. As seen in Appendix A, the

midband frequency need not be located close to the mean frequency of the passband. One has, at midband,

2 2
SmidS _5

7mi,_ = _ (51)

which gives a good indication of the strength of localization effects in a "typical" mode of the system.

Let us now consider the case where a parameter common to two adjacent bays is disordered. In this

case the transfer matrix has the general form in Eq. (6), where a and 13are functions of two independent and

identically distributed random variables, 8i and 8i-1. Assuming that 13 and ot may be uniformly expanded

in the small disorder parameters 6i and 6i-1, we find an expansion of Ti,i-1:

Zj;j_l =[13(6i,_1i-1) -°_(6_ 6i-1)] = [/01o -O°] + [13'_ -1 -cg,i-I
]

0 J (o,o)6i-l

-o,,1 -° ]
0 a (o,o) 0 (o,o) T (52)

0 0 (o,o) 0 a(o,o) _ +""

6,L,
=To + T,16i + T,26i_1 + T, I1--f + T,126i6 j + T,22.--- f- +...,

where the index notation T,_ and T,2 has been adopted to denote differentiation with respect to the first variable

(6i) and the second variable (6i_1), respectively. A transformation to wave coordinates is accomplished
using the matrix X from Eq. (45). The result is an expansion of the wave transfer matrix in the small disorder
parameters 6i and 6i- 1:

W 62 W 6i2"-1
Wi:i_ 1 = Wo + W,16i + W,26i_l + ,ll"-f + W,12 6i6i-1 + ,22--_'- +... (53)

The wave transfer matrix of an N-bay segment is

I/VN = WN.N_ 1 WN_I;N_2 ... W2; 1W1; 0

1 ( W 62 2"_ W 6i_ i '_ (54)
- I-[ kWO + W,16_ + W,26i__ + ,11-_ + W,126_6i-_ + ,22---f-j.

i=N

* ¢r = r/2 does not correspond to a nattual frequency unless N]4 is an integer. Nonetheless, in each passbanck the frequency corresponding to

¢r -- 7r/2 (see Eq. (23)) will have an equal number of frequencies above and below it.
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Carrying the product out to the second order in the 6's, the one-one term is found to be, after tedious algebra,

N N
_,_-±=a '_" 1÷_-_"(W,l+w,2),,_6,÷: 2j"(w,2 w,1),,_:,

TN i=, i=,

+e-J°'(W,11+W,22),,E =e iN°" I+CIE_i+C2E_ , 0,,C2 _ C

i=1 i=' i='

(55)

The tilde on _ underlines the fact that a few liberties have been taken, Le.; we have ignored very complicated
terms that we know will vanish in the averaging process at a later stage in the derivation. The term containing

W,2 W,, appears due to the occurrence of the same random variable in two adjacent matrices. Next the

magnitude of _ is evaluated:

N N

i,_,_1_=1+R,_,÷,_= _ 6,_+o(:),
i=, i=,

R1, R2 E _ (56)

Due to the terms linear in 6, a second-order expansion of log IwNI 2 is required, that is, log(1 + x) =

x - x2/2 + O(z3). Dividing by 2N and taking the limit as N _ cx_yields the localization factor, after

substantial algebra:

3,= lira 1 loglwNi 2

8 sin 2 a

/_,1/_,2 --_o/_,20t,l a,l' ÷0t,22
-- +

2 4

(57)

where
03(_5i, 6i_,) l

/3,, = ]06i .(o,o)

Oa(6i, 6i-1) I
oq, = 06i (0,0)

OZa(_i, 61-1) Ia,n = 06/2 (o,o)

Ot_(_i, 6i-1) [/3'2 = " O_i- 1 (0,0)

Oot(6i, 61_,) I
Ot_2 = O_i--1 (0,0)

O'_Ot'(_i, 6i-- 1 ) [a,22 = 0_/2_ 1 (o,o)'

(58)

which reduces to the form of Eq. (50) for/3(6i, _i--1) = /_(_i) and Ot(6i, _i--l) = 1. Finally, in the numerous
cases where

f(6i-l)

Ot(6i, 6i--1) = f(_i----"-_' (59)

Eq. (57) simplifies to

[ rE,O,,+,3,2 ] 2 (' .. .f'(O) 1 " (60)

At midband Eq. (60)reduces even further, to:

"[mid=_([JOmid,l--t_mid,2] 2+4[ftrnid(O)]2_L_J ]"
(61)

20



6.3. Modified Perturbation Method -- High Sensitivity.

As suggested in Section 6.1 and observed in Section 6.2, the Classical Perturbation Method fails in the limit

of high sensitivity, i.e., when S = fl_(0) is large. Not only may this be seen by the failure of the Taylor

expansion offi (Eq. (42)), but also by the fact that 7 in Eq. (50) becomes large (order e-l) for S large, while

it supposedly is a small perturbation of its zero value in the tuned system's passbands. The introduction

of first-order mistuning in a system with strong sensitivity (fl'(0) >> 1) has the effect that in the passbands

fl(6i) becomes large 1. This suggests the following modified perturbation scheme, where the off-diagonal

terms are considered as the perturbation.

Ti=[_(61 i) O1]=[fl(06i)0]+[0 O1]=_i+AT. (62)

A brief review of the equation of motion, Eq. (3), aids in a physical interpretation of the Modified Perturbation

Method. The larger _ becomes compared to 1, the less qi is influenced by qi÷l and qi-l. Consequently,

in Eq. (62), a coupled system is treated as a perturbation of the uncoupled system. Since the modified

unperturbed matrix i'i is already diagonal, there is no need for a wave coordinate transformation. Hence

the physical coordinates are also "wave coordinates 2 "' and i"i is a wave transfer matrix for the unperturbed

structure. The wave transfer matrix for the perturbed, N-bay structure is then

wN= I-I Ti II'Fi + E TiAT1- I
i=N i=N l=l [.iffiN i=l--1

 (6i) -
= i=N

L ifN-- !

, (63)

where the product is expanded to the first order in the perturbation, AT. Due to the special form of 61' all

terms in the sum vanish except the first one and the last one. These terms become the off-diagonal terms

in the matrix product and do not affect the transmission coefficient. Thus, in accordance with Eq. (41) the
localization factor becomes

/4

= (In I/3(6)1} = J In I/3(6)lpdf6( )d6, (64)7

where 0 denotes an average and pdf6(6) is the probability density function of the random variable 6.

Next we attempt to express the localization factor in terms of the large sensitivity measure, S = fl_(O).

Focusing on the midband frequency, where the interblade phase angle is a = _r/2 and 1_(0) = O, the first-order

approximation of/3mia for small 6 is (assuming that the remainder of the expansion is uniform)

_mid(6) '_" Staid6, O(Smid) > 1. (65)

Equation (64) may now be written as

"[mid _-- In IS_ial + f In 161pdf6(6)d6, (66)

which in the case of a uniform distribution, 6 E [-W, W] - [-x/3s6, x/_s_], reduces further, to

%hid "" In ISmidl + ln(x/3s6) - 1, O(S_id) > 1, (67)

t Recall that in a tuned system's lmssband --2 < fl(0) < 2.

2 Since the unpert_ structure is uncoupled it does not actually traasmit waves.
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a remarkably simple and general characterization of localization in the high sensitivity case. Note that only

the system sensitivity and the mistuning standard deviation are needed to evaluate 7- Also note that since

S,,_ia is large, 7,_,ia is not first order but of order one, corresponding to a strong localization behavior. Pierre

[14] examined a chain of single-degree of freedom oscillators, where S - l/R, i.e., the sensitivity is the

inverse of the dimensionless coupling between oscillators. His result verifies Eq. (67).

In the limit of strong sensitivity, the Modified Perturbation Method treats a coupled system as a

perturbation of an uncoupled, disordered system. This implies that the method is applicable only to weakly

coupled assemblies and leads to an interpretation of sensitivity as an inverse of the coupling among bays. High

sensitivity to mistuning has already been observed in systems with weakly coupled bays [14]. However, the

definition of coupling in complicated multi-parameter systems is not always possible, whereas the evaluation

of S =/3'(0) is straightforward.

Note that the results of this section are valid only in the cases where the mistuning is not common to

adjacent bays as in Eq. (6). Since the systems of immediate interest to us do not exhibit strong localization

when common parameters are disordered, this extension is not developed here.
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Figure 10 Approximation of the localization factor at the midband frequency as a function of the

sensitivity measure (Staid = fl'id(0)). (_) corresponds to the classical perturbation

result (Eq. (50)), valid for Staid small. ( -- - --) corresponds to the modified approach

(Eq. (67)), valid for Staid large. The mistuning is uniform with 5% standard deviation.

Figure 10 illustrates the perturbation results for the mid-passband localization factor (Eqs. (51) and

(67)) for a generic system described by Eq. (5), plotted as a function of sensitivity. The mistuning is uniform

with 5% standard deviation. Equations (51) and (67) are valid in the limit of weak and strong sensitivity,

respectively. Observe the rapid onset of localization, followed by a more moderate increase but large values
of 7mid in the limit of high sensitivity.
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6A. Example.

We now apply the tools developed above to the system depicted in Fig 2. Corresponding to the mistuned
parameters k_ and k_ are measures of sensitivity to mistuning, S blade and S disk, according to Eq. (43). No

such measure has been defined when the mistuned parameter is one connecting two interfaces, therefore

the case where kc is mistuned is given a different treatment. A parametric study identifies combinations of

parameter values leading to high sensitivity. Analytical approximations of localization factors are obtained

in the limits of weak and strong sensitivity. These approximations are verified by Monte Carlo simulations.

6.4.1. Measures of Sensitivity

Disk Mistuning: From the definition oft in Eq. (14), when 6_ = 6/_ = 0, one has:

fca(1+6:) 602 r_u_2
/3(6ia)= 2 + _ kc(l- 602) kc

(68)

Thus, from Eq. (43), the measure of sensitivity to disk stiffness mistuning is simply,

sdis k = k.dd (69)
kc

Note that since fl(6_) is linear with respect to the mistuning, its first-order Taylor expansion is exact. S disk

is easy to comprehend. The sensitivity increases linearly with the disk stiffness and is inversely proportional

to the stiffness of the coupling spring. It is independent of the blade stiffness and the mass of the blade

and the disk. The sensitivity measure is also independent of frequency and is therefore the same in both

passbands. Note the obvious correlation between weak interblade coupling and high sensitivity as kc _ to

and ka --o 0. These results confirm those of Wei and Pierre [9], Pierre [14], and Comwell and Bendiksen

[151.

Blade Mistuning: Forblademistuningonly,_/d= 6_ = 0 and Eq. (14)simplifiesto

/3(6_) = 2 + -_/ca 602(1 + 6/b) ,d.u2,2
k_ k,(1 + 6_ - 602) kc (70)

Thus, from Eq. (43)
604

Sblaa_ = (1 - 602)2_ " (71)

Equation (71) is more complicated than it first would seem, because the location of the passbands, and

hence the corresponding ranges for &, depend on the system parameters k,, kd and _. The sensitivity is

of course very different in the two passbands of the system. To give an example of how deceptive Eq. (71)

is, one might wrongly assume that a large coupling spring stiffness, kc, always leads to low sensitivity. A

counterexample is given below. However, small values of k, do ensure high sensitivity, as we soon will see.

Focusing on the midband frequencies, we solve Eq. (35) for cv with cr = 7r/2, and obtain

-2 2f% +Tca + r_ + 1 V/[2k_ + ka + rn + 1] 2 - 4rn [ka + 2T%]

aJmia = 2rh + 2ff'_ ' (72)

where the minus sign denotes the first passband. Substituting the values of,,mia-2 into Eq. (71) yields

[ l]"midta = 4k--_
(73)
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where the plus sign now corresponds to the first passband and the minus sign denotes second passband

sensitivity. The sensitivity to blade mistuning at midband is plotted in Fig. 11. The plots show contours of

the surface S_ad_(kc, kd, r_) by, in turn, fixing one parameter and varying the other two. A study of the

plots yields information about the combination of parameter values that lead to strong sensitivity in the two
passbands.

Figures 1l(c) and 1 l(e) tell us that strong sensitivity in the first passband may be produced by large
as well as small values of kc, the coupling spring stiffness. At first it seems surprising that a large k¢ leads

to high sensitivity at the first midband. Indeed, Fig. A2(c) in Appendix A indicates that for high values of
k_ the passband width is large. However, we see that for large kc all natural frequencies except the first

one merge with the upper passband edge. Hence, although the passband is large, the range of the natural

frequencies becomes small, and this system has very weak coupling. In Appendix A a system with stiff

coupling springs is likened to a collection of blades mounted on the perimeter of a rigid ring. The blades

are thus decoupled in the limit k_ _ o_, vibrating in their first mode with qia __ 0. The opposite occurs in

the second passband, where the bay is vibrating in its second mode that, unlike the first mode, requires a
nonzero q/a. In this case the stiff coupling spring contributes heavily to the coupling between bays and the
sensitivity decreases as kc increases.

In addition to the above observations we note from Fig. 11 that if r_ is large enough, increasing it

will cause a decrease in first passband sensitivity and an increase in second passband sensitivity. Varying

r_ for small r_ has only a small effect on sensitivity, as evidenced by the lower portion of Fig. 1l(e) and
Fig. 1 l(f). Similarly we see that an increase in k,t increases first passband sensitivity except when kd is small

(Fig. 1 l(a)) or when/% is very large (Fig. 1l(c)). Second passband sensitivity decreases with increased

k,/but only in ranges determined by r_ and fee. A combination of a small k¢ and a large kd leads to high
sensitivity in both passbands.

Coupling Spring Mistuning: Although we have not defined a sensitivity measure for the system in

Eq. (6), we attempt to examine its sensitivity to mistuning by considering all four possible first-order Taylor
coefficients. From Eq. (14), with 6/d = 6/b = 0,

1 [k_ _ff,2 _2 ] 3° + 6_:+ 61%1 (74)fl(6_' _ic-']) = 1 +6_: _:_ _:_(1 __2) +2+6_:+ 6_-1 = 1 +6_:

and from Eq. (15)

from which

and

1 +6__ 1

OLi;i--I= 1 + 6_ (75)

a3(6_, 6___) ]o_ <o,o)=1 - 3o Oq/_(_ :, _ie._l) ]06'(-! (o,o)- 1
(76)

0c_(6_,_-1) [ 0_(6_, 6__1) [06_ (0,o)= - 1 06__f (o,o)= 1 (77)

All four Taylor coefficients in Eqs. (76) and Eqs. (77) remain of order one or smaller for all parameter values.

We conclude that in the case of coupling spring mistuning the classical perturbation is valid for all parameter

values. Tiffs system is thus never strongly sensitive to coupling spring mistuning and only weak localization
may be expected to occur.
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6.4.2. Localization Factors and Monte Carlo Simulation.

Based on the expressions for the sensitivity measure, we are now in the position to examine the localization
factor due to the above three types of disorder in the limits of low and high sensitivity. Using Monte Carlo

simulations we confirm the validity of the perturbation approximations of the localization factor and the

validity of S as a measure of sensitivity.
Monte Carlo simulations were performed in the following manner. A series of random transfer matrices

representing the bays of a finite, cyclic assembly were generated, based on a random sequence, 6i, from a

random number generator. We labeled the resulting assembly one realization of mistuning. The matrices

were multiplied together and transformed into wave coordinates, as explained in Section 6, yielding the
wave transfer matrix for the mistuned assembly (see Eq. (39)). The localization factor for this particular

realization of an N-bay system may be calculated from,

11117N =_-ffln _ . (78)

This was repeated for a large number of realizations of the assembly and the result averaged, adding

realizations until the desired accuracy hadbeen reached. The above constitutes one Monte Carlo simulation,

for a system with some set of parameters ko ka and rh vibrating at some frequency.

One point must be made about N, the number of bays in each realization. A product of a finite number
of transfer matrices does not account for the infinite number of successive reflections that occur in the bays

of an infinite system. A Monte Carlo simulation based on single bay realizations, N = 1, would only account
for direct transmission through the bay and all reflections would be truncated. A Monte Carlo simulation

using two bay realizations, N = 2, would additionally account for the wave fractions that are reflected twice

as they propagate through the assembly, but all higher order reflections would be truncated, and so on. The
number of bays in each realization is especially important when localization is strong (the off diagonal terms

in Wi are no longer very small). For the cases studied, it was found that fewer than eight bays (N = 8)

for each realization would, for strong localization, converge to an incorrect value for the localization factor.

The number of realizations required for the convergence of 7N varied but was usually in the thousands.

Verification by Monte Carlo simulations consists of two parts. On the one hand we verify the variation

of 7 as a function of frequency by running a series of simulations for a range of frequencies and plot the

results along with the perturbation approximations in the passbands. The other part of the simulation process
is the verification of the two perturbation solutions of 7,_ia as a function of the sensitivity measure, Smia. It

is clear that both 7mia and Smia are functions of k¢,/ca and rh and may thus be parameterized with any or all

of these parameters. This offers the opportunity to examine the invariance of the relationship between 7,,_ia

and Smia with respect to the system parameters, such that we would expect to obtain the same relationship
no matter which of/co,/ca or _ is varied. This relation should also be independent of which passband is

chosen for the simulation. If this invariance is verified then the localization factor in Eqs. (51) and (67) will

prove to be an extremely general tool for predicting mistuning effects when used in conjunction with the

measure of sensitivity, Smia.
For the Monte Carlo simulations a uniform distribution of width 2W was assumed for the mistuning.

The standard deviation of the mistuning is -_.

Disk Mistuning:
From the perturbation analysis, the localization factors are:

Weak Sensitivity

2 2
8dk d

7d -_ 8kc2sin2 (7'

2 2
Sdkd

7d,mid "_ "8k2e•

(79)

(80)
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and Eq. (82) ( -- - -- ). The simulation result is a collection of data generated by varying

both kc and kg in both passbands, with all results falling on the same curve. The standard

deviation of uniform disk stiffness mistuning is 5%.
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Figure 13 Exponential decay, 7d, due to 5% disk stiffness mistuning vs. frequency. In stopbands

Monte Carlo simulations (--) nearly coincide with the propagation constant for the

tuned system ( ........ ). In (a) the simulations results overlap the classical perturbation

result ( -- -- - ), Eq. (79), in the passbands. In (b) the simulation agrees with the modified

perturbation result ( -- - -- ), Eq. (81).

Strong Sensitivity

kc [_(x/3sa)ln 13(x/3se) [ - 3(-x/3sa)ln [3(-x/3sa)]] - 1,
"Td_-- 2X/_Sdkd

7e,mie __ ln l ki +ln(V_Sd)--1.

(81)

(82)
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These results are plotted in Fig. 12 as a function of the sensitivity measure in Eq. (69), S ai`k = ka/kc.

Observe how the transition from the classical petmrhation to the modified perturbation result, that is, from
weak to strong localization, occurs at about the sensitivity value S,_id _-- 30. Also note that the Monte

Carlo results agree well with the perturbation results in the limits of strong and weak sensitivity. Figure 13

illustrates the validity of the perturbation approximations throughout the passbands. In Fig. 13(a) an excellent

agreement between the simulation results and the classical perturbation solution is observed. Figure 13Co)

demonstrates the quality of the modified perturbation solution in the passband of a very sensitive system,
while the classical result grossly overpredicts the localization factor.

Blade Mistuning:
The perturbation analyses yield the following localization factors:

Weak Sensitivity

1[ _%_--_¢2 (1_032) j 8sin 2a
(83)

[ ]'s2 2_+fea_rh_l±v][2_c+_a+r_+l]2 4rh[_a+2_e]
")'b,mid "_

(84)

where the plus and the minus signs denote the first and the second passband, respectively.
Strong Sensitivity

(1 -- 032)flo In I_(V/3Sb) I

( ) ( o, ) ,8,,7b ----- o34 + 2 2kcv/'3s_ flo+ kc(1 032)2V/3sb /3o + f%(l" ---032) . _

If1 l+_/[2ke+ka+_+l]2-4_ [kd+2kc] +ln(v/3sb)-- 1 (86)7b,_id "_ In _ 21%+ka-r?z-

with the same sign convention as above.

Figure 14 illustrates the transition from the classical perturbation approximation of the mid-band

localization factor to the one obtained by the modified perturbation approach. The sensitivity measure,

S_a de (Eq. (73)), is affected by all parameters, rh, kc and ka as well as the passband number. Figure 14

contains three overlapping Monte Carlo simulation curves, each obtained by varying a different system

parameter, i.e., rh in 1st passband, ka in 2_ passband, and finally, 1% in 1st passband. These curves overlap

nearly perfectly (except for a slight discrepancy at very high sensitivity) and they also agree closely with

the corresponding simulation curve in Fig: 12 for disk stiffness mistuning. This suggests that S = 3'(0) is

indeed highly suitable as a universal measure of sensitivity, at least for mono-coupled systems.

Figure 15 shows the exponential attenuation as a function of frequency in a system that has low sensitivity

in the second passband but high first passband sensitivity. In the second passband the classical perturbation

solution provides an excellent prediction of weak localization. In the first passband the modified perturbation

approach matches the simulated results, thereby confirming the strong localization approximation.

Coupling Spring Mistuning:
Weak Sensitivity, from Eq. (60)

2-t3os2c

% - 2+3o 2 (87)
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"r,,mia --- _ (88)

Strong Sensitivity is never obtained through mistuning of _:_.

In Fig. 16 we observe the excellent agreement between the classical perturbation result and the Monte

Carlo simulations in the case of spring mistuning. This was evidenced for all other parameter values, which

confirms the lack of high sensitivity to spring mistuning. It is interesting to note that the localization factor

vanishes at the left passband edge. This is reasonable since at that frequency no stretching of the coupling
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spring occurs and mistuning of the spring stiffness is inconsequential.

6.4.3. Summary

We now sum up the results of this section and attempt to shed light on the meaning of the localization factor.

The system of Fig. 2 only exhibits low sensitivity to the mistuning of the coupling spring stiffness. This

spared us the effort of developing a general expression for the localization factor in the ease of mistuning of

parameters connecting two interfaces. Although similar results may be expected for other blade assembly

models, this should not be generalized to all periodic structures. A counterexample known to the authors

is a nearly periodic beaded string [18], where mistunlng the length of the string segments causes strong

localization, even though the string connects two interfaces, similarly to the spring in Fig. 2.

Mistuning of either the disk stiffness or the blade stiffness can lead to strong localization. For disk

stiffness mistuning we found high sensitivity as kc _ 0 or ka --+ oo. The sensitivity was independent of the

blade stiffness, kb, the masses ma and rob, and the frequency.

In the case of blade stiffness mistuning, all parameters k_, ka and rh, as well as the frequency, were

seen to affect the level of sensitivity. High sensitivity in the first passband was observed as ka ---' oo and as

r_ --* 0 and for either k_ --, oo or k_ --. 0. In the second passband the system exhibits high sensitivity as

---* oo and k_ ---, oo, whereas ka by itself cannot directly cause high sensitivity. However, lower values

of ka cause increased sensitivity in both passbands.

Figures 12 and 14 depict the transition from the classical to the modified perturbation approximation

of 7 in the interval 7mia E [0.1, 1]. We have used the subjective terms weak and strong to classify the

localization in the two limits. According to Figs. 12 and 14 our classification would term ? _< 0.1 as weak

localization and 7 >- 1 as strong localization. In an infinite system with localization the vibration amplitude

is governed by e -'tic. Thus for 7 = 0.1 the ratio of the amplitudes of adjacent bays is e -°'_ __ 0.90, such

that on average the energy transmitted from one bay to the next is 82% and 56% is transmitted to the 3 rebay.

For-r = 1 the average energy transmitted to the next bay is 13.5% and less than 0.25% of the energy reaches

the 3 rdbayl Of course, for the tuned, undamped system 7 = 0 and 100% of the energy is transmitted.

The mistuned system whose modes are depicted in Fig. 8 has, at the second midband frequency, a

sensitivity $_aa2 _- 25. A quick check of Fig. 14 gives "Y,naa"" 0.2. At ? = 0.2 the amplitude is decayed
by 90% by the time it reaches bay number -In [0.11/0.2 = 11. Of course the vibrations decay in both

directions, clockwise and counterclockwise. Modes 14 and 16 in Fig. 8 are closest to the second midband

and support this.
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Thesignificance of the value of 3' depends on the total number of bays in the assembly. For example,

7 = 0.2 indicates 90% attenuation over 11 bays and such localization would appear much less significant

in a 10-bay assembly than it would in a 100-bay assembly. It would thus be useful to define a measure of

localization that takes the total number of bays into consideration. This can be achieved by introducing the

localization length or localization scale, N* = 1, with which an alternative classification of localization

could be the ratio if-r. In that case an N-bay assembly would experience 90% localization decay from one
N

end to the other when e-TV-*- = 0.1, or if-: = 2.3, from which the necessary value of-), (and thus S) could

be obtained in terms of N. Higher values of _-. would indicate more radical localization. The normalized

inverse localization length, fir., could be used as a simple predictive tool.

7. An Alternative Measure of Sensitivity.

Results of the preceeding sections indicate that high values of localization are associated with frequency

ranges in which natural frequencies are closely packed. In Section 4.3 we introduced the concept of modal

density, the number of natural frequencies per unit frequency. Here we examine the relationship between

the modal density and localization as a source of an alternative measure of sensitivity.

Consider the eigenvalue problem:

+ 6C( j)} us = o, (89)

where Co is a circulant matrix describing the dynamics of the full, tuned cyclic assembly and 6C is a

perturbation of that matrix due to mistuning of the system. Co and 6C are not transfer matrices. It may

be shown that the first-order perturbation of the eigenvector, 8u j, is inversely proportional to the distance

between the corresponding tuned natural frequency, wj, and other tuned natural frequencies, ¢oi, i :/j [13].

This confirms that if the natural frequencies of a system are closely spaced, the system will be highly sensitive

to mistuning.

We attempt to develop a measure of sensitivity based on this information. An expression for the spacing

of natural frequencies in the cyclic system in Eq. (4) is required. Solving Eq. (30) for n, the natural frequency

number, and introducing a factor 2 to account for the fact that most natural frequencies are double yields

(90)

where n, a function of _, is the number of natural frequencies smaller than _. We define the ratio of the

derivative of n(_) to N as the modal density, r/(o3), the relative number of modes per unit frequency, and
obtain:

1 dn(_) _ (91)
r_(o3)= N dw = 2rsina"

The qualitative behavior of Eq. (91) is in some ways similar to that of the localization factor in Eq. (50), e.g.,

near the passband edges (a ---*0 or 7r) the modal density becomes large. However, we were not successful

in establishing a quantitative relationship between 3"and r/. In the example we examine how correctly r/

predicts high sensitivity.
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Example:

From Eq. (91) we find the modal density of the system in Fig. 2 to be

1

r/(&) = 7rkc \/4 _ [2+ _ kc(1 -_2 )_2 '_"_ Jrh_2] 2 (92)

At mid-passband this simplifies to

o( 1)r/mid ---- _ m + (l -- _,2)2 " (93)

Figure 17 displays a parametric study of Eq. (93). Figure 17Co), in which rh is held fixed in the first passband,

confirms qualitative agreement with the equivalent study of the sensitivity measure S, nia in Fig. 1 l(e). A

comparison of Fig. 17(a) and Fig. 1 l(a), in which kc is fixed in the first passband, reveals a vital difference

between the sensitivity measure, Staid, and the modal density, r/mia. High values of rh lead to high modal

density, which should translate into high sensitivity to mistuning. This high modal density is verified by

Fig. A2(a) in Appendix A. Figure 1 l(a), however, shows low sensitivity values for high values of rh. The

Monte Carlo simulations verify that it is indeed the sensitivity measure, S, that correctly predicts low levels

of localization in the first passband of systems with high values of rh. Although r/correctly yields high

values of the modal density, it fails to take into account the fact that all the frequencies of the first passband

go to zero for high values of rh, and it is thus a poor predictor of sensitivity to mistuning in this ease. We

conclude that although the modal density is easily calculated and provides useful information regarding

mistuning effects, it must be used with care.
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8. Conclusion

A transfer matrix approach was suggested as an efficient way of modeling blade assemblies in which

the coupling between remote blades is sufficiently weak to be ignored. We focused on mono-coupled

assemblies, i.e., assemblies in which only adjacent blade-disk sites are connected and only through one

degree of freedom. All knowledge about the dynamics of tuned, mono-eoupled assemblies is contained in a

transfer matrix of dimension two, regardless of the actual number of degrees of freedom for each blade-disk

dement. We observed that the frequency domain is divided into passbands, in which waves propagate

indefinitely, and stopbands, in which attenuated standing waves occur. We reasoned that the number of

passbands is equal to the number of degrees of freedom for each blade-disk element and that the natural

frequencies are contained in the passbands. The natural frequencies, mostly double, correspond to a pair of

complex conjugate, constant interblade phase angle modes.

In the second part of the paper mistuning was seen to cause a splitting of the double natural frequencies

and a drastic change in mode shapes. Instead of the extended modes possessed by the tuned system, the

vibration energy concentrates in relatively few blades with amplitudes far beyond what was predicted by the

tuned system analysis. These modes of a nearly cyclic system are a manifestation of localization, the effect

of energy confinement due to scattering of waves at substructure interfaces.

We suggested a technique by which, based on the model of a single blade-disk dement, the sensitivity

of an assembly to mistuning could be expressed in terms of its parameters, using a sensitivity measure, S.

The development of S was based on the qualitative changes observed in the system behavior as the expansion

of the transfer matrix in the small mistuning parameter becomes nonuniform. Perturbation techniques were

used to generate analytical approximations of the localization factor as a function of S in the limits of high

and low sensitivity.

To validate the results, Monte Carlo simulations were performed on a popular model of a blade

assembly. Our conclusion is that our measure of sensitivity, S, provides an excellent prediction of the levels

of localization. Not only is the ,.qmeasure simple, intuitive and cost-effective but also amazingly universal,

i.e., given a statistical distribution in the mistuning parameter, the relationship between "Yrnid and Smid is

quantitatively the same, regardless of which parameter is mistuned, and is valid for a wide range of the

system parameters. Approximations of the localization factor showed very good agreement with Monte

Carlo simulations in the limits of high and low sensitivity, for all frequency values.
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Appendix A: The Passbands of the 2-DOF Per Bay System: A Parametric Study

We examine the effect of the parameters fa, kd and kc on the passband/stopband structure of the tuned cyclic

assembly and hence on the location of its natural frequencies. A physical interpretation of the passband

edges may be given by recognizing the symmetries exhibited by a cyclic assembly vibrating at the bounding

frequencies. These symmetries allow us to reduce the problem to that of single blade-disk elements. At the

edge frequencies adjacent bays are vibrating in phase, cr = 0, or out of phase, a = 7r. In the in-phase case, the

coupling spring does no work and the assembly behaves as if the blades were uncoupled. This model, which

we shall call the free blade, mimics the dynamics of the left, or lower, passband edges. In the out-of-phase

case the midpoint of the coupling spring is stationary and the assembly behaves like a series of decoupled
substructures, each connected to ground through two springs, each of stiffness 2ke. We refer to this model

as thefixed blade. It mimics an assembly vibrating at the right, or upper, passband edges. Note that the two
models hold in both passbands.

q_ }......_ qb

.eI

! ,, /,"

" qd

777-/-/777

Figure A1 Single blade systems that mimic dynamic behavior at the passband edges. These systems are

called the free blade system (left) and the fixed blade system (right).

These two single blade systems are illustrated in Fig. A1 and may be shown to have the natural frequencies

_2 (lea + _ + 1) 4- x/(kd + _ + 1)2 -- 4_fCd
f_,,2 = 2_ (A1)

for the free blade model and

¢D2 (ka + rh + 4ke + 1) 4- x/(ka + _h + 41¢c+ 1)2 - 4r_(/ca + 4k_)
fixed,.2= 2rh (A2)

for the fixed blade model. In both cases the minus sign corresponds to the first passband and the plus sign
to the second band.

These single blade systems may be used to examine how the individual parameters affect the pass-
band/stopband structure of the cyclic assembly. The results are summarized in table A1. The first, and most

obvious point to be made is that the dimensionless parameter kc has no effect on the lower passband edges.

In the case of a low fcc the upper passband edges approach the lower edges, i.e., the passbands narrow and

vanish as kc --+ 0, as seen in table A1. Less trivial is the case when k, tends to infinity. The first passband
motion of the fixed blade system is that of a blade cantilevered at its root with _ = 1. In the second mode of

the fixed blade system the disk displacement must be nonzero. Hence as kc _ oo the corresponding natural

frequency tends to infinity.

For vanishing disk stiffness ka, the free blade system behaves like a two-mass body free in space. The

first mode of this system is a rigid body mode and hence the first passband begins at o3 = 0. The second
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naturalfrequencyofthefreebladesystemis_2 = (I+ r_)/r_.The two naturalfrequenciesof thefixed

systemwhen thediskisnotpresentare

(r_ + 4kc + 1) -4- _/(r_ + 4kc + 1)2 - 16rY_kc
o3_2 ._k_.o_= for ka = 0. (A3)

axeal,2 2rh '

When ledbe,comes infinitethesubstructuresof thesystembecomes weakly coupledas evidencedby the

vanishingofthepassbands(seetableA I).The springstiffnesskcisobviouslyimmaterialinthiscaseand the

firstnaturalfrequencyofboththefixedbladeand freebladesystemsapproachesthebladenaturalfrequency,

= 1.As inthecaseofinfinitecouplingspringstiffness,thehighstiffnessofthediskdegreeoffreedom

leadstonaturalfrequenciesinthesecondpassbandthattendtoinfinity.

kc -"_ 0

kc -"" oo

ka ----_0

I st passband

leftedge rightedge

-2
_.J (kd,,,O)

2t_passband

leftedge rightedge

l+r_ -20

kd+l k._+4kc+l

_ ---_oo 0 1

Table A1 Passband edges for limiting values of the assembly parameters. The values of _f_e_ and _rree2

are given by Eq. (A1) and those of _txed(tkj-o) and o3axe_k_-0)by Eq. (A3).

Finally, the effect of the mass ratio r_ is examined. When rh _ 0 the mass of the disk is negligible
relative that of the blade. The effective inertia of the second mode vanishes with the result that the second

natural frequencies of both systems goes to infinity and with it the entire second passband. The first natural

frequencies of the free and the fixed blade systems approach the distinct values given in Table A1. If,

conversely, the disk mass is infinitely higher than the blade mass, r_ ---, oo, the system is equivalent to a

cantilevered blade and the coupling spring has no effect. The first mode of both systems, in which the masses

move in phase, becomes a rigid body mode with _ = 0. The second natural frequency of both systems

approaches the blade natural frequency, _ = 1. Thus, both passbands narrow to a single frequency.

Figure A2 shows a parametric study of the natural frequencies of a 50-blade assembly. Since the

number of blades is even, the passbands are bounded by the lowest and the highest natural frequencies.

The most important feature of the system is illustrated in Fig. A2(c). For high values of kc, the natural

frequencies in the first passband are densely spaced at the right (upper) passband edge _ all except the first

one. This is not surprising since the first mode has all bays vibrating in phase, unaffected by the coupling

spring, whereas all other modes require some stretching of the very stiff spring. Thus, it is as if the blades

are mounted on the perimeter of a rigid ring and all frequencies but one approach the natural frequency of

a cantilevered blade. The first frequency corresponds to a mode in which there is rigid rotation of the ring.

Note also the implications of this behavior with respect to the midband frequency (or = Ir/2): The midband

frequency merges with the right passband edge and is no longer located close to the average frequency of

the passband. The modal density at the midband frequency tends to infinity.
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Figure A2 Natural frequencies of a 50-blade assembly, plotted as a function one of kd, kc and r_ with the

other two fixed. Since the number of blades is even, the lowest and the highest frequencies
are also the bounding frequencies of the passband.
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